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Abstract—Currently, software systems are operated in a
dynamic and uncertain environment, making it difficult to
predict the operating environment. Particularly, the Internet of
Things (IoT) interconnects several entities, users, and information
resources with services. Therefore, IoT systems can dynamically
create various environments at runtime. Consequently, to support
the dynamic IoT environment, an efficient verification method is
required for IoT systems. Model checking is one of the formal
methods for verification of concurrent systems, which is applied
in several software fields. However, model checking has a chronic
problem (i.e., state explosion) that obstructs the verification at
runtime. To overcome this limitation, one possible approach is to
abstract the system design as expression forms and then perform
verification by solving the expressions. To apply this approach,
the abstraction and verification processes need to be performed
at a reasonable time. In this article, we focused on developing
an efficient model checking method during the IoT system run-
time verification. A cache mechanism is proposed that reduces
the computational time for abstraction and verification, which
was validated through experiments. Additionally, the compari-
son of other model checking tools (such as RINGA, CadenceSMV,
NuSMV, and nuXmv) reveals that the proposed approach is more
efficient at runtime.

Index Terms—Finite-state machine (FSM), model checking,
runtime, verification.

I. INTRODUCTION

MODEL checking is an automated technique, which
has a finite-state model of a system and a formal

property [1], and is used as a formal method for verifying
concurrent systems [2]. Therefore, model checking is applied
in several software fields, such as software engineering [3],
[4], robotics [5], [6], software verification [7], [8], Internet
of Things (IoT) [9], [10], online software [11]–[14], and
self-adaptive software [15]–[19]. Currently, software systems
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are operated in changeable, dynamic, and uncertain environ-
ments, and as a result, it is difficult to predict the operat-
ing environments of software systems. Therefore, verification
of software needs to be performed not only at the time
of design but also at runtime for checking its robustness
and reliability. Particularly, IoT systems interconnect entities,
users, and information resources with services. Therefore, IoT
systems can create various runtime environments [20], [21].
Consequently, such systems require frequent validations and
verification methods owing to variations in the runtime system
configuration. Moreover, an efficient verification method is
required for resource-constrained IoT devices. One of the ver-
ification methods for IoT, namely, model checking, has been
applied to verify IoT’s reliability during designing and run-
time [10], [22]–[34]. However, model checking has a chronic
problem that interrupts the verification at runtime, i.e., state
explosion. The number of state space significantly increases,
thus becoming a limitation for model checking [1]. For this
purpose, in recent years, several studies have been conducted
to overcome the limitation of runtime verification with its own
characteristics (such as abstracting state machine [35], trans-
form state machine to matrix expression [17], [18], temporal
logics [5], [36], and transition model [37]). In this article,
we focused on model checking using model [i.e., finite-state
machine (FSM)] abstraction and model transition as equations
to verify the model at runtime for the IoT applications.

To abstract models, a previous study [16] proposed a frame-
work (i.e., RINGA) to verify software at runtime by model
checking. RINGA consists of two main processes: 1) design
time and 2) runtime. In design time, a system is designed as
an FSM and the designed FSM is then abstracted as a sim-
ple FSM, which consists of only initial and end states. In
the abstracted model, there are transitions that connect the
initial and end states, and these transitions are expressed as
mathematical equations. In the runtime process, the abstracted
model is used for runtime verification and the verification is
performed by only calculating the transitions that consist of
the equations. The initial results of the runtime efficiency of
the abstraction and runtime verification are presented in [16].
Additionally, RINGA has been expanded with an FSM design
and game theory-based strategy extraction method for IoT [9],
[10], [38]. The suitability of the expanded RINGA was demon-
strated through experiments, and the results show that the
framework can be applied at runtime within a reasonable com-
puting time. Additionally, RINGA was expanded with an FSM
design and a game theory-based strategy extraction method,
for the IoT [9], [10]. However, RINGA has the limitation of
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increasing the computing power in not only the abstracting
model at design time but also in the verification at runtime
when the model size is large and complicated. Therefore,
the model checking of RINGA requires further performance
improvement to handle more complex IoT systems. To over-
come this limitation, we propose a cached-based abstraction
and runtime verification mechanism, which reduces the over-
lapped calculation in the abstraction and verification processes.
Experiments are conducted to compare the proposed mech-
anism with other model checking tools (i.e., RINGA [16],
CadenceSMV [39], NuSMV [40], and nuXmv [35], [41]),
and the experimental results demonstrate that the proposed
method can be applied at runtime. Additionally, the cache-
based approach can significantly reduce the abstraction and
verification time in comparison with the initial research.

The remainder of this article is organized as follows.
Section II provides a background of model checking, studies
for model checking at runtime, and FSM abstraction model
checking method. Section III introduces the proposed cache-
based method for abstracting FSM. Section IV presents the
results of the described experiments. Section V discusses the
limitations and studies for model checking in the IoT systems,
and Section VI presents the conclusion and future studies.

II. BACKGROUND AND RELATED WORK

In this section, the background and related work are
described, as well as related works on model checking at
runtime. Section II-A briefly describes the model checking.
Various studies that focus on model checking at runtime are
described in Section II-B. In Section II-C, the FSM abstraction
method, which is the initial research of this article, is intro-
duced. In Section II-D, studies introduced that apply model
checking for IoT.

A. Model Checking

Model checking is one of the verification techniques
for hardware and software. Model checking uses the state-
transition graph as the modeling of its target and uses temporal
logic as the specification (i.e., requirement) for verifica-
tion [42]. Several transition systems can be used for modeling
in model checking, such as transition system [1], FSM [16],
discrete-time Markov chain [17], [18], [43]–[46], and proba-
bilistic model [47]. However, these models describe a system
with states and transitions. The states denote the status of the
system, and the transitions describe the connection and direc-
tion between the states. Therefore, the transition system that
is used in model checking can be described as follows [1]. A
transition system is a tuple (S, Act, →, I, AP, L), where:

1) S is the set of states;
2) Act is the set of actions;
3) →⊆ S × Act × S is the transition relation;
4) I ⊆ S is the set of initial states;
5) AP is the set of atomic propositions;
6) L : S → 2AP is a power of the label function.
Additionally, temporal logics are proposed to describe the

specifications in model checking. In particular, linear time
logic (LTL) and computation tree logic (CTL) are used to

describe the specifications [2]. LTL consists of basic temporal
operators: � (eventually), � (always), © (next), and ∪
(until) [1]. The temporal operators can be expressed as cap-
ital alphabets: F (eventually), G (always), N (next), and U
(until) [2]. LTL is formed according to the following gram-
mar: AP of atomic propositions (with a ∈ AP) and Boolean
connectors (i.e., conjunction

∧
and negation ¬) [1]

δ ::= true | a | δ1

∧
δ2 | ¬δ | © δ | δ1

⋃
δ2.

CTL is a branching time logic for temporal logic with
basic temporal modalities [i.e., � (eventually), � (always), ©
(next), ∪ (until), ∃ (for some future), and ∀ (for all future)].
CTL state formulas with set AP of atomic propulsions are
described as [1]

� ::= true |a| �1

∧
�2 | ¬� | ∃δ | ∀δ

where with a ∈ AP and δ is a path formula. CTL path formulas
are formed according to the following grammar:

δ ::= ©� | �1 ∧ �2

where �, �1, and �2 are state formulas. However, LTL
and CTL are not comparable because their expression ranges
are different. Precisely, there are properties that cannot be
expressed in LTL but can be expressed in CTL, and vice
versa. CTL can verify the existence of behavior and LTL
can verify more complex behavior [1], [2]. However, there
are several studies to improve the expression of model check-
ing (e.g., CTL∗ [48], CTL+ [49], probabilistic CTL [50],
PCTL∗ [51], continuous stochastic logic (CSL) [52], propo-
sitional LTL (pLTL) [53], [54], quantitative temporal expres-
sions (QuaTExin) [55], multiQuaTExin [56], signal temporal
logic (STL) [5], CSL [37], and HyperLTL [57]). However,
temporal logics need effective and optimized methods (algo-
rithms) to verify that a system model can reach specific
states for implementation as a software program. Therefore,
in this article, we propose a cache-based abstraction method
for model checking at runtime.

B. Model Checking for Runtime Verification

In this section, recent studies that focused on model check-
ing at runtime are described. There are several domains for
model checking at runtime. First, runtime model checking
methods are applied at self-adaptive systems or softwares [16]–
[19]. Filieri et al. [18] proposed a mathematical framework
for self-adaptation at runtime using quantitative verification
and sensitivity analysis. They focused on the probabilistic
requirement, applying discrete-time Markov chains (DTMC)
and quantitative probabilistic requirement description. In their
framework, there are two steps: 1) precomputation (at design
time) and 2) verification (at runtime). In the precomputation
step, a system model, variable labels, and requirements are
synthesized and translated as expressions with matrix forms.
In the verification step, the expressions that represent the ver-
ification conditions for satisfaction of an adaptation system
are calculated using monitored data at runtime. A wireless
sensor network (WSN) system is used as a case study for the
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framework, demonstrating its applicability and practical advan-
tages. However, the framework of Filieri et al. has a limitation
with respect to the regeneration of expressions. If a system
model or the environmental factors are changed, the expres-
sions are regenerated to adapt to the changes. Additionally,
the regeneration process may require a large computational
time. Nakagawa et al. [17] proposed a caching mechanism to
reduce the number of executing Laplace expansions at runtime
to overcome this problem. The caching mechanism consists
of three strategies: 1) caching; 2) prediction; and 3) grouping.
The experimental results demonstrated its efficacy at runtime.
Additionally, Weyns and Iftikhar [19] focused on providing
a guarantee for adaptation goals and proposed a modular
approach for decision making in self-adaptive systems. The
modular approach is based on architecture and applied stochas-
tic timed automated (STA) as modeling. Furthermore, there is
another architecture-based self-adaption study for model check-
ing. Cámara et al. [58] also proposed an approach to generate
optimal adaptation plans for architecture-based self-adaptation
via model checking, which included stochastic multiplayer
games (SMGs), a dynamic game with probabilistic transitions
in game theory. Probabilistic model checking (PMC) provides
modeling and analysis of stochastic behavior for SMGs in
self-adaptation. Therefore, FSM with probability is used for
modeling, and rPATL is applied in the approach. The approach
is applied in a case study involving the infrastructure for a news
website (i.e., Znn.com) [59]. Schmerl et al. [60] proposed an
architecture-based self-protection approach with model check-
ing based on Denial of Services (DoS). DTMC is used for formal
modeling, and probabilistic reward CTL (PRCTL) is used for
quantifying the results of adaptive strategies. The self-protection
approach is applied to a case study that contains DoS of a web-
site case study (i.e., Znn.con in DoS). Lee et al. [16] proposed
a self-adaptive framework named RINGA. RINGA provides an
FSM for designing self-adaptive software and a model abstrac-
tion method for runtime verification. In the abstraction method,
an FSM designed for a self-adaptive system is translated as
equation forms and the equations are calculated for verification
at runtime. Moreover, RINGA has been applied in a case study
containing IoT-based smart greenhouse scenarios [10], thereby
demonstrating its extensibility.

Verification via model checking has been applied in real-
time systems. Zhao and Rammig [12] focused on the state
explosion problem and proposed a lightweight verification
technique based on an online model checking for real-time
systems to overcome the problem. They proposed a partial
checking method with specific execution tracing. Therefore,
their method does not directly check the execution traces but
checks some steps ahead of the actual state execution. The
FSM and LTL formulas are applied in the online model check-
ing method. Qanadilo et al. [13] expanded the online model
checking method with offline backward exploration for accel-
erating online model checking. The expanded online model
checker has the same basic approach as that of the online
model checking [12], and the Boolean satisfiability problem
(SAT) solver is optimized and customized for accelerating
the online model checking. Furthermore, Sudhakar et al. [14]
researched on how to implement the online model checking

method [12] into a real-time operating system and proposed
an architecture for the implementation. Naskos et al. [11]
proposed a model-driven approach for the dynamic provision-
ing of cloud resources, and PMC-based decision processes are
used to select the optimal resources at runtime. The approach
proposed a probabilistic model based on Markov decision
processes (MDPs) [61], and the MDPs are monitored and they
reflect the status of a target system. Moreover, the MDPs are
verified online using a model checking tool (i.e., PRISM [23]),
and the optimal elasticity decisions are determined at runtime.

Robotics is one of the domains that need to be veri-
fied at runtime, and studies have been conducted to apply
model checking in this domain. Desai et al. [5] proposed a
framework for building safe robots with model checking to
program autonomous mobile robots with formal guarantees
and high assurance. Model checking is applied for testing
reactive robots that are programmed with event-driven lan-
guage (i.e., P language [74]). P language comprises state
machines for communication between events, and STL, which
is used for the description of properties on signal val-
ues at runtime. For runtime verification, the framework for
robots uses a brand of execution-driven and explicit-state
model for the robotic software system. Thus, model check-
ing may not enumerate all the states of the designed software.
Additionally, Zhao et al. [6] developed a framework with
PMC for robots deployed in extreme environments (envi-
ronments that are hazardous for humans). However, PMC
uses layered and parametric DTMC for system modeling
and probabilistic CTL (PCTL) for describing safety and
reliability properties. Bayesian estimators are used for catas-
trophic failure-related parameters. The PMC-based frame-
work is used in unmanned underwater vehicles in extreme
environments.

Moreover, some studies apply model checking at runtime for
service-based software. Su et al. [37] proposed a framework
called ProEva, which extends time-bounded continuous-time
Markov chains (CTMCs) model checking [36] for service-
based software, especially Infra as a Service (IaaS). For for-
malization, CSL [36] is applied in ProEva. ProEva computes
asymptotic expressions and bounds for the imprecise model
checkout output. A case study (i.e., Fujitsu disk drive [62]) is
used for the evaluation of ProEva and the evaluation results
reveal that ProEva exhibits an acceptable computational over-
head. Gao et al. [63] also applied model checking for runtime
verification of service software, especially the Web service
reconfiguration architecture. In their method, the monitoring
process is based on a PMC with PTCTL and linear regression
analysis-based for reliability prediction. Based on the results of
the monitoring process, Web services are dynamically selected.
Finally, the service is reconfigured and verified by using a
counterexample-guided abstraction refinement (probabilistic
CEGAR) approach. Kejstová et al. [7] proposed an approach
for the adoption of a model checker (i.e., DiVinE [64]) to per-
form runtime verification. DiVinE is a parallel and distributed
LTL model checker for C and C++ programs. Timed automata
and untimed LTL are used in the model checker. DiVinE is
expanded by the addition of a run mode. In this mode, a pro-
gram is explored in the standard execution order, and behavior
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TABLE I
COMPARISON OF PREVIOUS RUNTIME MODEL CHECKING METHODS

checking is performed at runtime. Ngo et al. [8] proposed a
framework with statistical model checking for SystemC mod-
els. SystemC is a class and macro of C++ language for
providing event-driven simulation interfaces. The framework
monitors a set of execution traces of the model under veri-
fication (MUV), and a statistical model checker implements
a hypothesis testing algorithm. The statistical model checker
is implemented as a previous model checker (i.e., Plasma
Lab [65]) that describes system properties as bounded LTL
(BLTL).

Table I presents a summary of the comparison of previous
research and the proposed method. However, each of these
studies includes its distinct characteristics with various model
checking methods in several target environments. In this arti-
cle, we focus on enhancing the previous model checking
method (i.e., RINGA [16]) for runtime verification. Therefore,
we propose a caching mechanism to reduce the comput-
ing time of the abstraction and runtime processes. Details
associated with the abstraction algorithm are presented in
Section II-C.

C. Runtime Verification Method With Model Abstraction

In this section, the FSM abstraction method is introduced
and the abstracting method is called RINGA [16]. RINGA was
proposed for self-adaptive software with a modeling rule using

an FSM called self-adaptive FSM (i.e., SA-FSM) and a model
checking method at runtime. To apply model checking at run-
time, an abstraction method was proposed in RINGA; this
method abstracts a system model that is modeled as an FSM.
The result of abstraction is a simple FSM called abstracted
FSM (i.e., A-FSM) and the abstracted model consists of tran-
sitions described as equations. Fig. 1 illustrates the process
of the abstraction method in RINGA. The abstraction process
starts at the end states (e.g., s3 and s4 in FSM in step 1). To
extract the path to the end state from the initial state, the tree
data structure is used. The starting point is the end state, which
is located as a root node of the tree structure. The tree structure
then expands its children nodes using connected transitions in
the designed FSM. If a state that matches a node in the tree
structure has transitions from other states, then the transitions
are used for the expansion of the tree structure. For example,
in Fig. 1, s3 is set as a node of the tree structure and has
transitions (e2 and e5) from other states (s1 and s2); thus, s1
and s2 are set as the children nodes of s3 in the tree structure.
However, if there are iterative states, the iterations are deleted
and the expansion is stopped. Finally, the tree structure has
root nodes from the end states in the system model, and the
terminal nodes are the initial states. Furthermore, the paths
from the terminal nodes to the toe root node in the tree struc-
ture denote the paths from initial states to the end states in the
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Fig. 1. FSM abstraction process in RINGA [16].

system model. The results of the tree structure are translated
as equation forms.

In the translation process, the parent relationships are con-
verted into * or && operations because the parent relationship
indicates the components of a path. If one edge (transition)
cannot reach the next state, the remained states (connected
states) also cannot be reached. Additionally, the sibling rela-
tionship is translated as + or ‖ operations because the sibling
relations imply different paths. If one sibling is unable to
reach an end state, but the other sibling may be able to reach
the end state. If the transitions of SA-FSM are described as
Boolean type, && and ‖ are applied. Furthermore, if the trans-
lations are expressed between 0 and 1 (i.e., probability), +
and * operators are applied. After the translation process, the
abstracted translations are applied as translations of A-FSM.
The extracted A-FSM is used at runtime for verification. The
effectiveness of RINGA for verification at runtime is demon-
strated through empirical evaluation and case study. The details
of the FSM abstraction are described in the previous research,
along with the algorithms and definitions [16].

However, RINGA has a limitation when the computing
power needed for the abstraction algorithms and model size is
increased. Additionally, even if the abstracting process elim-
inates duplicated calculation by deleting the iterative paths,
there may exist duplicated calculation in verification at run-
time. To overcome these limitations, a cache-based FSM
abstraction method and verification are proposed in this article.

D. Model Checking in the IoT Systems

Several studies employed different model checking tools
for modeling and verification of the IoT systems. A model
checking-based self-adaptive framework was proposed for the
IoT applications [9], [10]. The self-adaptive framework was
based on the RINGA model checker. The framework proposed
an FSM-based IoT system design and verified its requirements
following the designed FSM reachability. A model check-
ing applied IoT system was proposed for microgrids [22],
wherein a localized group of electricity sources was centered
on distributed power sources from the traditional wide-area

synchronous grid (i.e., a macrogrid). The IoT system consisted
of four layers: 1) sensors; 2) communication devices; 3) con-
trollers; and 4) actuation. Each layer contained probabilistic
models that use model checking tools, such as a probabilistic
model checker (PRISM) [23], for verification. The possi-
bility model checking-based approach was demonstrated to
improve reliability in the microgrid IoT system. A probabilistic
position estimation and model checking approach was intro-
duced for resource-constrained IoT devices [66]. The approach
estimated the IoT end node positions using a Markov local-
ization algorithm. Furthermore, the model checking technique
was applied for position validation. The process meta lan-
guage (PROMELA) and SPIN model checking tool [67] were
employed as modeling language and verification tools, respec-
tively. A positive indication was observed for the proposed
estimation approach in a cattle-breeding IoT network. A refer-
ence model was proposed for IoT application-specific design
and analysis challenges, such as representing heterogeneous
layers (hardware and software components) and lack of
Quality-of-Service (QoS) verifying methodologies [24]. The
reference model was named SySML4IoT and based on the
ISO/IEC/IEEE 15288 [68] IoT reference model, and a trans-
lator was proposed to verify the model with a model checking
tool. To apply the modeling results into the model checking
tools, such as a new symbolic model checker (NuSMV) [40],
[69], a model-to-text translator (SySML2NuSMV) was used to
translate SySML4IoT into a text. Furthermore, the approach
was applied to an IoT scenario for building energy conser-
vation to evaluate the proof of concept. Furthermore, two
IoT service-oriented computing (SOC) challenges: 1) unreli-
able service and 2) resource constraints, were resolved using
PMC, which consisted of modeling and analysis [27]. An
IoT service composition was functionally modeled as FSM
and was translated to the MDP to specify the service oper-
ator reliability. Furthermore, the analysis included PCTL to
specify service composition quality and PRISM to check
probabilistic modeling. This approach was applied to a sim-
ple fire alarm service in a meeting room. A Petri net in a
Petri net PN2 system was proposed for the design and anal-
ysis of the IoT-based multiagent services [28]. Moreover, the
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multiagent system was analyzed by the SPIN model check-
ing tool. The multiagent system was applied to an IoT service
in a smart home case study. Furthermore, the NuSMV model
checking tool was applied to support PN2 in a conference
support system case study [29]. A hybrid testing environment
was proposed for IoT systems that have various system con-
figurations and nondeterministic execution [25]. The model
checking method was used for the automatic verification of
communication-derived possible execution orders. The hybrid
testing environment applied the SPIN model checker and
evaluated it in the regression test of a heating, ventilating,
and air-conditioning (HVAC) IoT system. The regression test
exhibited an effective reduction in the IoT system regression
test burden. A formal colored Petri nets (CPN) model [32]
of the message queuing telemetry transport (MQTT) proto-
col [70] was proposed for the IoT network. The CPN model
applied incremental model checking that exhibited reduced
state explosion effect than the previous model [71].

Moreover, the model checking method was applied for
security-related issues, such as uncertainty, preventing unde-
sirable interaction, risk analysis, security framework, and
functional correction. The ThingML framework [72], [73]
provided modeling and language for heterogeneous and dis-
tributed systems. Furthermore, ThingML could assist the
rapid development of resource-constrained IoT applications.
However, ThingML exhibited model capability-related limita-
tions, such as uncertainty and quantification of the models.
A ThingML-based IoT framework was proposed to quan-
titate the evaluation uncertainty [31]. The ThingML-based
framework received the design requirements, which contained
user-expected performance matrices, and extended ThingML
designs, along with various information maps, such as network
delay and sensor inputs. The framework translated the design
requirements as temporal logic-based queries. As the network
of priced timed automata (NPTA) models were the computa-
tional models for ThingML language, the extended ThingML
designs were transformed into NPTA models. Furthermore,
NPTA models evaluated the QoS with model checkers such as
UPPAAL-SMC [74]. To examine the effectivity of the frame-
work in QoS evaluation, the framework was applied to two
cases: 1) interaction of things within client/server architec-
ture and 2) a heating control system. A framework named
IOTSAN was proposed, using model checking, to prevent
undesirable interactions that result in unsafe physical states
in IoT systems [30]. Moreover, IOTSAN was designed to
prevent the state explosion. The application source code in
IOTSAN was translated to PROMELA form, to facilitate
the model checking tools, such as the SPIN. An attribution
mechanism identified problematic and potentially malicious
applications. Test cases were used to assess the efficiency and
identify a safe property violation. Furthermore, a framework
named IoTRiskAnalyzer framework, which employed PMC
was proposed to analyze IoT system configuration risks [26].
This framework used vulnerability scores from risk assessment
models, candidate IoT configurations for achieving a system’s
goal, and capabilities as input, and produced an ordered
set of risk exposure probabilities-based configurations. The
PRISM probabilistic model checker was used for the analysis.

IoTRiskAnalyzer efficiently analyzed the risk for IoT network,
in a home security automation scenario. Keerthi et al. [33]
applied to model checking to solve security-related issues,
such as functional correctness of implementation, program-
ming bugs, side-channel analysis, and hardware Trojans. A
C-based model checker (CBMC) [75] was implemented in
the security issues. A formal verification demonstrated that
CBMC was effective in some issues, such as programming bug
detection and side-channel security implementation. However,
formal verification tools were required to resolve the huge state
space. Furthermore, a security framework was proposed for the
IoT system modeling and analysis [34]. In the security frame-
work, formalism described IoT structures and components,
including entity interactions and activities. The formalism was
transported into PRISM language to check requirements that
describe PCTL. Moreover, the framework applied a smart
healthcare emergency room to exhibit security framework’s
effectiveness.

Table II summarizes the existing IoT model checking meth-
ods. Several IoT studies applied model checking methods with
different efficiencies. However, we focused on developing an
efficient model checking method during the IoT system run-
time verification. We have aimed at improving the abstraction
and runtime verification method used in the RINGA model
checking tool. RINGA has been applied in the IoT modeling
and runtime verification [9], [10]. However, this required
greater computing power for larger models and was com-
plicated. Therefore, RINGA exhibited limitations in complex
IoT environments. Consequently, efficient abstraction and run-
time verifications were needed for divergent IoT environments.
Therefore, we proposed a cache-based model abstraction and
verification method.

III. CACHING MECHANISM FOR ENHANCEMENT OF

MODEL ABSTRACTION AND VERIFICATION AT RUNTIME

The initial result on runtime verification with model abstrac-
tion is called RINGA [15], [16]. This initial research provides
an FSM design to model self-adaptive software and runtime
verification with model abstraction. Moreover, the research is
applied to the IoT environment [9], [10]. However, RINGA
required performance improvement to be applied with com-
plex FSM especially in the design-time process (i.e., the
model abstraction process). Therefore, to solve the limitation
of RINGA, we proposed a caching mechanism to enhance the
performance of not only model abstraction but also runtime
verification compared to the previous model checking method.

A. Overview

The proposed cache-based model checking method consists
of two phases: 1) abstraction at design time and 2) verification
at runtime. Fig. 2 shows an overview of the proposed approach.

The abstraction phase is responsible for model abstraction
and the result of model abstraction is used in the veri-
fication phase. The abstraction phase can be divided into
two parts: 1) system modeling and 2) model abstracting. In
system modeling, a system that needs runtime verification is
designed as an FSM. Note that the abstracting phase only
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TABLE II
EXISTING IOT MODEL CHECKING METHODS IN IOT

considers how to abstract the designed FSM during system
modeling. Therefore, the details of the system model design
are out of the scope of this article. However, a simple FSM
design is proposed for a caching mechanism called cached
FSM (C-FSM) and the proposed FSM contains rules for the
abstracting phase. The proposed caching model is applied to
the system model in the abstracting phase. In the abstrac-
tion process, the designed system model is abstracted as a
model for verification at runtime, and the abstracted model
is called cached and abstracted FSM (CA-FSM). Note that
RINGA’s approach is used when translating from a path to
an abstracted transition (i.e., equations form of the path) (see
Section II-B). Furthermore, transitions of the system model
are parameterized and saved in the cache database. Extracted
CA-FSM transitions are also saved in the cache database.
Finally, the abstracted model is transferred to the verification
phase and used for verification at runtime with the cached
database. Details of the abstraction phase are described in
Section III-B.

The verification phase is executed at runtime. To verify
the system at runtime, the proposed approach is made with
a loop. The loop is based on a MAPE loop mechanism (mon-
itoring, analysis, planning, and execution) that is a prominent
control loop to organize self-adaptive software [76], [77].
However, the planning and execution processes are combined
as one process in the proposed approach. The proposed loop
is made up of three processes: 1) monitoring; 2) verifica-
tion; and 3) adaptation. The monitoring process is responsible
for collecting data from the system and the environment and
monitored results are used to update parameter values in the
cached database. The verification process is responsible for

the verification of the system. The updated parameters in the
monitoring process are used to update cached translations, and
the translations are utilized for verification. According to the
verification result, the condition of the system is analyzed and
appropriate strategies are triggered in the adaptation process.
Subsequently, the monitoring process is executed, and the loop
continued after the adaption process. Details of the verification
phase are presented in Section III-B.

B. Caching Mechanism

In this section, the caching mechanism is described. As
described in the previous section, the caching is performed
at design and runtime phases. The caching mechanism in
the design-time phase is described in Section III-B1 and
the caching mechanism in the runtime phase is described in
Section III-B2.

1) Caching in Design Time: The proposed approach verifies
a system that described an FSM at runtime, thus the system
must be described as an FSM. Additionally, the change of
transitions from the FSM must be monitored to verify the
system at runtime. Therefore, all transitions are extracted as
parameters and the parameterized transitions are saved into a
parameter database. Values of the parameters (i.e., change of
the transitions) are monitored at the runtime. Fig. 3 shows the
parameterization process.

After the parameterization, the designed system model is
abstracted for verification at runtime. The abstraction is based
on RINGA’s approach (see Section II-B), but the proposed
approach applies the cache mechanism for performance
improvement. However, to apply the cache mechanism, the
system model is being remodeled as C-FSM. Note that the
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Fig. 2. Overview of the proposed approach.

Fig. 3. Transition parameterization.

remodeling is not impacted at the system model but is only for
applying the cache mechanism. We defined types of transitions
as in-transition and out-transition. In-transition is a transition
that comes into a state from another state (i.e., if there is a
state, and there is a transition from other states into the state,
then the transition is in-transition). On the other hand, out-
transition is a transition that goes ahead to other states (i.e., if
there is a state, and there is a transition from the state to other

states, then the transition is out-transition). With this definition
of transitions, the C-FSM can be expressed as a tuple (S, s0,
→, I, AP, L), where:

1) S is the set of states;
2) the states classified into three types {Snormal, Scache,

Send} ⊆ S;
3) s0 is an initial state;
4) Send is a set of end states;
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Fig. 4. Caching in the abstracting phase.

5) Scache is a set of states which have two or more out-
transitions;

6) Snormal is a set of states which is not an initial state,
Scache and Send;

7) →⊆ S × S is the transition relation;
8) AP is the set of atomic propositions;
9) L : S → 2AP is a power of the label function.
C-FSM has a distinctive state type that is Scache, and the

state set is used as criteria for which transition can be cached.
Fig. 4 shows how to use Scache for caching mechanism in the
abstraction process. There are two end states s6 and s7 and a
cache state s5. The path to reach the cache state is needed to
extract a path to reach each end state (see “abstracting pro-
cess with cache state” in Fig. 3). Therefore, the cache path
is required to extract both end states. The path cq0 is thus
saved in the cache database to prevent repetitive extraction of
the cache path. In other words, if an abstraction is to find a
path to reach state s7, then save a path to reach s5. The cached
path is then used as an adaptation process to find a path reach-
ing s8. However, the other paths that are not cached path are
not being cached, because the other paths are not needed for
repetitive calculation (i.e., the other paths are only calculated
once in the abstraction process). Finally, the abstracted results
that contain paths reaching end states are saved in the cache
database.

The abstracting result can be described as a simple FSM,
and we named the FSM as CA-FSM. CA-FSM is described
as a tuple (S, s0, →, I, AP, L), where:

1) S is the set of states;
2) s0 is an initial state;
3) all states are end states except initial state;

4) →⊆ S × S, and it is only one type s0 × S;
5) all transition is described as an equation expression;
6) AP is the set of atomic propositions;
7) L : S → 2AP is a power of the label function.
As described in the definition, there is only one transi-

tion relationship in CA-FSM and the relationship is described
as an equation expression. Moreover, the equation expression
contains paths to reach the end states of CA-FSM.

Algorithm 1 lists the pseudocode of the abstraction phase.
Input data are an FSM describing a system that needs verifi-
cation at runtime. Output data are a CA-FSM, and the output
data are used for verification at the runtime phase. The algo-
rithm consists of two loops (i.e., lines 2–4 and lines 5–7 in
Algorithm 1). The former loop repeats for the number of
transitions in the input FSM. In the loop, all transitions are
parameterized and saved in the cache database (see Fig. 3). In
the second loop, the loop repeats for each end state to extract
the abstracted path reaching each end state. To find the paths, a
function is called to extract paths, and Algorithm 2 shows the
pseudocode of the path extraction (i.e., “searchNext” at line 6
in Algorithm 1). Input data are FSM that needs to be abstracted
and state id that needs to be searched currently. There is a loop
that repeats for the number of out-transitions of the inputted
state (i.e., “stateNow” in Algorithm 2). In the loop, if an out-
transition is connected with the initial state, then the transition
is saved as a path (lines 3 and 4 in Algorithm 2). Furthermore,
there are two options when the connected state with the tran-
sition is the normal state (lines 6–12 in Algorithm 2). If the
connected state is already existing in the cache database, then
the cached path is added in the return path (lines 7 and 8
in Algorithm 2). Otherwise, if the connected state is not a
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Algorithm 1 Pseudocode of the Abstracting Phase With Cache
Input: System model as finite state machine(FSM)
Output: Abstracted finite state machine(CA-FSM)

1: CA − FSM = null;
2: for FSM.nextTransition do
3: cachedDB.papameter(transition);
4: end for
5: for FSM.hasEndState do
6: CA − FSM+ = searchNext(FSM, endStateNow);
7: end for
8: return CA − FSM

Algorithm 2 Pseudocode of Path Extraction
Input: System model as finite state machine (FSM), current

state id (stateNow)
Output: Path consisted with transitions

1: returnPath = null;
2: for stateNow.hasInTranstion do
3: if stateNext = initialState then
4: returnPath+ = stateNow.outTranstion
5: else
6: if nextState = normalState then
7: if cacheDB.has(nextState) then
8: returnPath+ = cached.path(nextState);
9: else

10: returnPath = stateNow.outTranstion +
searchNext(nextState, FSM);

11: end if
12: end if
13: end if
14: end for
15: if stateNow = cacheState then
16: cached.add(stateNow, path);
17: returnPath = cached.path(stateNow);
18: end if
19: return returnPath;

cached state, then the algorithm calls itself recursively with
the connected state as input data (lines 9–11 in Algorithm 2).
The result of the recursively called function is the path from
the initial state to the input state, thus the returned path is
saved with out-transition that currently used transition in the
loop (line 10 in Algorithm 2). After the loop, if the inputted
state is a cache state, the extracted path is saved in the cache
database and the returned value is updated as a unique id of the
cached database. The result is returned to Algorithm 1 (line 19
in Algorithm 2). Finally, after the loop with end states is ended,
the abstracted FSM is returned (line 8 in Algorithm 1).

2) Caching in Runtime: An abstracted FSM (i.e., CA-
FSM), cached parameters, and cached transitions are used in
the runtime phase. The phase is made up of the same com-
ponents as a loop with three processes: 1) monitoring with
parameter updating; 2) verification; and 3) adaptation. Fig. 5
shows the processes in runtime verification. In the monitor-
ing process, parameters that were extracted at the design-time
phase are updated and the value of parameters is updated in

the cache database. The updated parameters are used in the
verification process when calculating transitions of CA-FSM.
Additionally, the verification process uses a cache database for
model checking with CA-FSM. As described in the previous
section, CA-FSM contains reachable paths to reach the end
states of the designed system model and results of CA-FSM’s
transitions contain model checking results. However, the first
step of the verification process is calculating the cache equa-
tion and updating the result of the calculation in the cache
database. This is because the cache equation is used at least
twice for verification (i.e., abstracted transitions will use cache
equations at least twice). After updating cache equations,
abstracted transitions are calculated and the updated cache
equations are used if the calculation needs the cache equations.
For example, in Fig. 5, cq0 (cache equations) is calculated and
updated first, then aq1 and aq2 (abstracted transitions) are cal-
culated with the result of cq0. After the verification process,
verification results are transferred into the adaptation process,
and the adaptation process performs analysis symptoms using
the results from the verification process. Finally, the moni-
toring process is executed and the loop of runtime phase is
continued.

Algorithm 3 shows the pseudocode of the runtime processes.
Input data are CA-FSM, cached parameter list parame-
ters, cached equations cacheEqus, and abstracted transitions
absTrans. The algorithm is made up of an infinite loop
(lines 2–15), but it can be terminated if a changing model
is needed or runtime errors occur. In this article, we focused
on the cache mechanism for verification at runtime, thus those
details of termination conditions are out of scope. However,
parameters are monitored and the monitored results are saved
in the cache database (i.e., values of parameters are updated
in the cache database) (lines 2–5). After updating the parame-
ters, the cache equations are updated to prepare the calculation
of the abstracted translation using the updated parameter val-
ues (lines 5–8). After updating cache equations, the abstracted
transitions are calculated using updated parameters and cache
equations, and the results are updated in the cache database
(lines 9–12). Finally, the results of abstracted FSM (i.e., results
of model checking) are used for analyzing a system, and
if adaptations are needed, triggers are selected and executed
(lines 13 and 14). After the executions, the loops are continued.

IV. EMPIRICAL EVALUATION

This section discussed a set of experiments for the empirical
evaluation of the proposed caching mechanism. A proto-
type of the proposed approach is implemented using Java
12.0.1. The experiments are conducted on Windows 10 desk-
top equipped with an Intel Core i5-9400F (2.90 GHz with six
cores) and 16-GB memory. The proposed approach consisted
of phases, which are design time and runtime, and the design-
time phase is executed only once. Therefore, we divided the
evaluation into design-time and runtime performance. The
proposed approach is based on a previous model-checking
tool (i.e., RINGA [15], [16]), which involves the abstract-
ing process to reduce the runtime verification time. Therefore,
the abstraction performance of the proposed approach is
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Fig. 5. Caching in the runtime phase.

Algorithm 3 Pseudocode of the Abstracting Phase With Cache
Input: Abstracted finite state machine (CA-FSM), cached

parameter list (parameters), cached equations (cacheEqus),
abstracted transitions (absTrans)

Output: None
1: for true do
2: for parameters.hasNext do
3: updateDB(monitor(parameterNow));
4: end for
5: for cacheEqus.hasNext do
6: resultEqu = calculate(equNow, parameters);
7: updateDB(equNow, resultEqu);
8: end for
9: for absTrans.hasNext do

10: resultTran = calcualte(absTranNow,

parameters, cacheEqus);
11: updatdDB(absTrannow, resultTran);
12: end for
13: triggers = analysis(cacheDB.getAbsTrans);
14: execute(triggers);
15: end for

compared with the previous research in design-time evalua-
tion. Moreover, in the runtime performance evaluation, the
proposed approach is compared with the model checking tools
(i.e., Cadence SMV [39], NuSMV [40], [69], nuXmv [35],
[41], and RINGA [15], [16]). The details are provided in the
following sections.

A. Design-Time Performance

To perform the experiment, we randomly select well-
formed FSMs of two different types to evaluate design-time

performance. The first experiment data set is generated with
increasing states, fixed transitions, and three end states. Each
state in the FSMs has two out-transitions that denote con-
nection into other states. The out-transitions are randomly
assigned to states; however, every state has at least one in-
transition to maintain the connection of the FSMs. Finally,
every state is connected and must be explored to abstract
the FSMs. The number of states is increased from 5 to 50,
and 100 FSMs randomly generated at each state number.
Fig. 6 shows results obtained for increasing number of states.
Above all, time for model abstraction is significantly reduced
after 30 states. The result shows that the proposed caching
approach can effectively reduce the computational time for
model abstraction compared to RINGA. Naturally, more com-
putational time is required when the number of states is
increased, but the proposed approach spends reasonable time
at runtime (i.e., only 1.23 ms with 50 states).

Furthermore, we performed a similar experiment, and the
data set of the second experiment is made up of increas-
ing transitions and 15 states. The former experiment data set
reflects the change of model size, this experiment data set
reflects the change of model complexity. Each of the 15 states
is assigned various number of transitions from 2 to 5, one
transition is used to connect every state (i.e., every state has
at least one in-transition), and the remaining transitions are
randomly assigned. The results with the increasing number of
transitions are shown in Fig. 7. Similar to the previous result,
more computational power is required when model complex-
ity is increased. However, these results also denote that the
proposed caching approach effectively reduces computational
time for model abstraction compared to RINGA (i.e., only
0.2 ms with five transitions). Therefore, the proposed approach
can handle complex model design compared to RINGA.
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Fig. 6. Results of model abstraction with increasing states (with two
transitions and three end states).

Fig. 7. Result of model abstraction with increasing transitions (with 15 states
and three end states).

As described before, the proposed approach is based on
RINGA, and the previous research has a specific limitation
about computing power for abstracting large-scale models.
Notwithstanding the model abstraction process is performed
only once in design time, this limitation makes it difficult to
apply in low computing devices (e.g., mobile or IoT device).
Additionally, if a system model is changed frequently, the
limitation can occur thus wasting computing power for the
abstracting process. However, the results of the design-time
evaluations suggest that abstraction ability and stability are
significantly improved compared to RINGA; therefore, the
proposed approach clearly resolves the limitation of RINGA.

B. Runtime Performance

In this section, experiments were performed to evaluate run-
time performance. The proposed approach is compared with

Fig. 8. Results of runtime performance with increasing states (with two
transitions and three end states).

previous model checking tools (i.e., RINGA, Cadence SMV,
NuSMV, and nuXmv). To briefly explain the model checking
tools, RINGA is a base model of the proposed approach with-
out a caching approach. Cadence SMV is a symbolic model
checker tool that was released by Cadence Berkeley Labs,
and NuSMV is an open-source version of cadence SMV [42].
Moreover, nuXmv is also a symbolic model checking tool for
analysis of synchronous finite- and infinite-state systems [35],
[41]. These model checkers are powerful tools in the model
verification area. However, those data sets are used for design-
time experiments (see Section IV-A). The caching approach
and RINGA use abstracted results from the design-time phase
because abstracted models are used at runtime in both model
checkers. The other tools use the same FSM model with reach-
ability from the initial state to end states. Using the intuitive
semantics of temporal modalities [1], reachability with n end
states is described as follows:

δ =
n∧

i=1

∃�endStatei.

Symbol “∃” denotes “exists,” “�” indicates “eventually,” and
“∧” indicates conjunction; therefore, “∃�endState” will be
“true” if there is a path from initial state to endState. Finally, δ

is true if there are paths to reach all n states. However, FSMs
in the test set are generated without nonconnected states, thus
there are always paths to reach all end states. Therefore, δ is
always true in the data set, thus reachability to each end states
must be checked (i.e., reachability of every end states should
be performed).

Runtime performance results are shown in Figs. 8 and 9.
As shown in the results, the proposed approach signifi-
cantly improves runtime performance compared with RINGA.
Especially, in the case of RINGA, the model increases rapidly
when it becomes complicated or large while the proposed
method is stable even if the model change is complex.
However, the results show that more computational time
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Fig. 9. Result of runtime performance with increasing transitions (with 15
states and three end states).

is required when the model size and complexity increased
because the abstraction equation (i.e., abstracted equation) is
more complicated as the size and complexity increase. On the
other hand, other tools show monotonic computational time
even if model size and complexity are increased. The reason
is that Cadence SVM, NuSMV, and nuXmv use different meth-
ods to find reachability. The tools terminate model checking
if they find a path to reach end states (i.e., the tools only pro-
vide a single path to reach end states). However, the proposed
approach considers all paths to reach the end states because
the abstracted equations contain all possible paths to reach the
end states. Nevertheless, the caching approach is better than
the path finding of other model checking tools.

V. DISCUSSION

In this article, we proposed the cache-based model check-
ing method with model abstraction and runtime verification
for IoT applications. The proposed approach yielded excellent
experimental results. However, there are several problems to
be solved before moving forward. In this section, we present
a discussion on the limitations of the proposed approach and
future research to overcome the limitations.

The proposed approach only considers the reachability of
FSM to verify an IoT system at runtime; thus, the require-
ments of the system must be designed with consideration of
reachability. This limitation causes constraints of expression
to describe requirements and restrictions design of FSM. To
overcome this limitation, temporal logics (i.e., LTL and CTL)
can be applied in the proposed approach. Temporal logics can
be combined with several patterns; therefore, temporal log-
ics are a method that needs to be applied in selecting cache
states for optimal abstraction. Additionally, if temporal log-
ics are applied in the proposed approach, the FSM model
can enhance the design of IoT environments in comparison
with the previous research [10]. However, if this limitation is

overcome, we can expect some advantages. IoT modeling is
less restricted than in the previous research; however, richer
requirement expression is possible.

Here, we focused on improving the model checking for
the IoT runtime verification. However, the proposed approach
required referenceable IoT system models. Previous investiga-
tions [10], [11] provided a framework and reference design of
FSM for our initial investigation such as applying the RINGA
algorithm. However, as the abstraction and verification meth-
ods were different, the previous framework and design were
inappropriate for the cache-based model checking approach.
Therefore, novel reference model designs and frameworks
were needed to apply the cache-based models in the general
IoT environments.

IoT connects several objects (such as device, user, and
requirements), and IoT environments can be changed dynam-
ically at runtime [78], [79]. Therefore, system design may
be changed at runtime, and the change must be reflected in
the system for proper verification. In the proposed method,
the system is designed as an FSM and the designed FSM
is abstracted as a model for runtime verification in design
time. Therefore, if the system change is needed, the whole
abstraction process is performed to reflect the change. This can
cause unnecessary computing power in the abstraction process
because the system change may not need to revise the over-
all system model. Therefore, the proposed approach needs a
method to modify a part of the designed model for reflect-
ing the changes at runtime. However, we assumed that system
model updating is possible only in some cache states changing
without the change of the overall model. In other words, the
change of the IoT system may be reflected by the revisioning
of some part of the overall model; thus, some cache states and
transitions that are related to the change need to be updated.
Additionally, it is assumed that if partial revision is possible,
the computing power can be decreased than the abstracting
overall FSM.

Moreover, as the proposed approach is aimed at IoT
systems, it requires additional improvements before its appli-
cation in real IoT systems. We referred to studies that
were conducted to improve methodologies for implementa-
tion [80]–[82]. To improve our approach, we plan to develop a
process that comprises three phases: 1) analysis; 2) design; and
3) implementation. In the first phase, we will perform anal-
ysis to enhance the performance of the verification method
by applying temporal logics and abstraction at runtime, as
described in the previous paragraphs. In the design phase,
we will develop a high-level system design based on FSM
and the proposed verification method. Furthermore, the system
will be designed using self-adaptive concepts and mechanisms
(e.g., MAPE loop) such that it can be adapted to dynamic
IoT environments at runtime. In the implementation phase,
we will conduct a simulation and implementation with a real-
IoT system. The simulation will overcome the limitation of
the system design and verification performance in different
IoT environments (e.g., the complexity of the IoT environment
with increasing actuators or sensors). The implementation will
be conducted with concrete IoT use cases for smart greenhouse
scenarios.
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VI. CONCLUSION

In this article, we proposed a cache-based FSM abstrac-
tion and runtime verification method for IoT and solved
problems of the initial research [15], [16]. The problems
increased the computing power with complicated FSMs; thus,
the initial research is difficult to apply in complex IoT
systems. The cache mechanism consisted of two phases:
1) abstraction and 2) verification. The system model is
provided as an FSM, and the abstraction phase parame-
terizes and abstracts the system model. In abstraction, the
system model (i.e., C-FSM) is abstracted as a simplified
FSM (i.e., CA-FSM), and the abstracted transitions are
extracted. The results of the parameterization and abstrac-
tion are saved in a cache database. Furthermore, in the
verification phase, the system is first monitored and the
parameters are updated in the database. The abstracted tran-
sitions are updated and used for runtime verification, and
adaptation is performed based on the results of the verifica-
tion. The proposed approach is implemented and compared
with not only the initial research but also other model
checking tools. The experimental results demonstrate that
the approach significantly reduces the computational time
for abstracting FSM in design time and verification at run-
time than the previous model checking tools. Moreover, the
experimental results demonstrate that the proposed approach
is better at path finding (i.e., reachability) than the other
modeling tools (i.e., Cadence SMV, NuSMV, nuXmv, and
RINGA). Additionally, we present a discussion on the
limitations of the proposed cache mechanism, and future
research is included to address these limitations. In future
research, the proposed approach will be enhanced to solve the
limitations.
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